A new revolution in lighting: LED Bulbs!
(All Moniker)
BUILTINLED.COM 2008-05-11
BUILTINLEDS.COM 2008-05-11
INTEGRATEDLED.COM 2008-05-11
INTEGRATEDLEDS.COM 2008-05-11
Prefer offers for the set, but will consider offers for individual names.
Energy Intelligence
The LED Illumination Revolution
02.27.08, 5:05 PM ET
Mark P. Mills
Apparently, it's time to ban Edison's venerable, now vilified, light bulb. European leaders, green pundits and the widely reported light bulb provisions of the U.S. Energy Independence and Security Act of 2007 all urgently push the abandonment of incandescent bulbs.
What irony. Here we are, in the 21st century, with a semiconductor revolution in lighting around the corner. Semiconductor light emitting diodes (LEDs) are finally on the verge of having the capability to radically alter the entire lighting landscape with staggering improvements in both lighting efficiency and efficacy.
The high-power LED emerges directly from the same semiconductor, digital infrastructure and intellectual property that brought us iPhones, laptops, hybrid cars and Xboxes. Though the word "revolution" has been devalued by overuse, the LED is only the third revolution in illumination technology since the dawn of fire.
Until now, there have been only three illumination technologies: fire, from, first, torches, tallow and wax candles and, later, whale and kerosene oil lamps; electric incandescence, famously perfected in 1879; and electric-induced fluorescence, introduced in 1938 by General Electric (nyse: GE - news - people ). In 1962, Nick Holonyak, a GE engineer, invented the LED, marking the next pivot in illumination's millennia-long march toward ever more ubiquitous, cheaper lumens. Holonyak may eventually become more famous than Edison.
Annual global sales of high-brightness LEDs already total $4 billion, even before invading the 40,000 tera-lumen market for general illumination. General illumination is currently supplied about equally by incandescent bulbs (dominant in residential markets) and fluorescents (dominant in commercial buildings).
Add awesomely long lifespans to the benefits ledger for LEDs. An Edison bulb burns 1,000 hours before the hammered metal filament flakes out. CFLs achieve 10,000 hours. LEDs last 50,000, and soon 100,000, hours. This feature alone is enough to give LEDs an enormous advantage in lower maintenance costs for many applications, especially in outdoor and industrial environments.
The small size of the LED light chip allows another advantage arising from the physics of optics: Engineers can employ collaterally small lenses making it possible to efficiently extract, direct and focus the lumens, achieving useful illumination with far fewer lumens--and far less energy--wasted.
There are even more benefits from the semiconductor character of LEDs. Lumens can be controlled and modulated for both color and spatial distribution to create smart lights that adjust to the environment or need. Headlights or room lights could be spectrally tuned to match the innate differences in day, night and peripheral vision, providing more comfort and safety.
LEDs can also communicate by electronically modulating the lumens. Brake lights could talk with a trailing car's cruise control; head lights talk with road signs to activate in-car audio/video warnings. Opportunities will be limited not by imagination but by how quickly costs collapse.
Forecasts for a $12 billion LED market within four years probably understate what will happen. As Haitz's Law continues to drive costs down, applications and markets will emerge in ways impossible to anticipate.
Mark P. Mills is a physicist and a co-founding partner of Digital Power Capital, an energy tech venture fund. Mills is also the co-author of The Bottomless Well: The Twilight of Fuel, the Virtue of Waste and Why We Will Never Run Out of Energy (Basic Books, 2005). Mills may hold positions in companies discussed in this column and may provide technology assessment services for firms that have interests in the companies. He can be contacted at [email protected].
(All Moniker)
BUILTINLED.COM 2008-05-11
BUILTINLEDS.COM 2008-05-11
INTEGRATEDLED.COM 2008-05-11
INTEGRATEDLEDS.COM 2008-05-11
Prefer offers for the set, but will consider offers for individual names.
Energy Intelligence
The LED Illumination Revolution
02.27.08, 5:05 PM ET
Mark P. Mills
Apparently, it's time to ban Edison's venerable, now vilified, light bulb. European leaders, green pundits and the widely reported light bulb provisions of the U.S. Energy Independence and Security Act of 2007 all urgently push the abandonment of incandescent bulbs.
What irony. Here we are, in the 21st century, with a semiconductor revolution in lighting around the corner. Semiconductor light emitting diodes (LEDs) are finally on the verge of having the capability to radically alter the entire lighting landscape with staggering improvements in both lighting efficiency and efficacy.
The high-power LED emerges directly from the same semiconductor, digital infrastructure and intellectual property that brought us iPhones, laptops, hybrid cars and Xboxes. Though the word "revolution" has been devalued by overuse, the LED is only the third revolution in illumination technology since the dawn of fire.
Until now, there have been only three illumination technologies: fire, from, first, torches, tallow and wax candles and, later, whale and kerosene oil lamps; electric incandescence, famously perfected in 1879; and electric-induced fluorescence, introduced in 1938 by General Electric (nyse: GE - news - people ). In 1962, Nick Holonyak, a GE engineer, invented the LED, marking the next pivot in illumination's millennia-long march toward ever more ubiquitous, cheaper lumens. Holonyak may eventually become more famous than Edison.
Annual global sales of high-brightness LEDs already total $4 billion, even before invading the 40,000 tera-lumen market for general illumination. General illumination is currently supplied about equally by incandescent bulbs (dominant in residential markets) and fluorescents (dominant in commercial buildings).
Add awesomely long lifespans to the benefits ledger for LEDs. An Edison bulb burns 1,000 hours before the hammered metal filament flakes out. CFLs achieve 10,000 hours. LEDs last 50,000, and soon 100,000, hours. This feature alone is enough to give LEDs an enormous advantage in lower maintenance costs for many applications, especially in outdoor and industrial environments.
The small size of the LED light chip allows another advantage arising from the physics of optics: Engineers can employ collaterally small lenses making it possible to efficiently extract, direct and focus the lumens, achieving useful illumination with far fewer lumens--and far less energy--wasted.
There are even more benefits from the semiconductor character of LEDs. Lumens can be controlled and modulated for both color and spatial distribution to create smart lights that adjust to the environment or need. Headlights or room lights could be spectrally tuned to match the innate differences in day, night and peripheral vision, providing more comfort and safety.
LEDs can also communicate by electronically modulating the lumens. Brake lights could talk with a trailing car's cruise control; head lights talk with road signs to activate in-car audio/video warnings. Opportunities will be limited not by imagination but by how quickly costs collapse.
Forecasts for a $12 billion LED market within four years probably understate what will happen. As Haitz's Law continues to drive costs down, applications and markets will emerge in ways impossible to anticipate.
Mark P. Mills is a physicist and a co-founding partner of Digital Power Capital, an energy tech venture fund. Mills is also the co-author of The Bottomless Well: The Twilight of Fuel, the Virtue of Waste and Why We Will Never Run Out of Energy (Basic Books, 2005). Mills may hold positions in companies discussed in this column and may provide technology assessment services for firms that have interests in the companies. He can be contacted at [email protected].